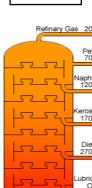
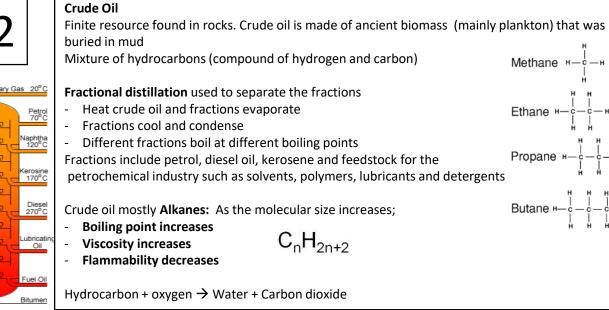
Rates of reaction: Can be measured by reactant decrease/time or product increase/time (g/s or cm ³ /s)				
Temperature	Increased Kinetic energy = more frequent and energetic collisions			
Pressure and concentration	More particle in given volume = more frequent collisions			
Surface area	More exposed particles = more frequent collisions			
Catalysts	Lower activation energy (provide a different reaction pathway) Do not get used up Enzymes are biological catalysts			

Reversible reactions: $A + B \rightleftharpoons C + D$ e.g. ammonia chloride \rightleftharpoons ammonia + hydrogen chloride Endothermic in one direction and Exothermic in the other


Equilibrium = forward and backward reaction occur at same rate if gases can not escape


Dynamic Equilibrium (HT)

Reactant Concentration	Concentration increase	Products increase		
	Concentration decrease	Reactants increase		
Temperature	Temperature increase	Endothermic direction product increase		
	Temperature decrease	Exothermic direction product increase		
Pressure Pressure increase		Side with smaller number of molecules increases		
	Pressure decrease	Side with larger number of molecules increase		

Pure substance: single element or compound – specific melting and boiling points				
Formulation: a mixture that has been designed as a useful product – fuel, paint, medicine, alloy, food				

Chromatography	Substance	Test	Positive Result	
Used to separate mixtures. Different compounds have different Rf values Stationary phase → mobile phase	Hydrogen	Burning splint	Squeaky pop	
Rf = <u>Distance moved by substance</u> distance moved by solvent	Oxygen	Glowing splint	Splint relights	
solvent front new position or of compound 2.8 cm	Carbon dioxide	Limewater	Turns cloudy	
origin	Chlorine	Damp Litmus paper	Turns white	
$R_{\rm f} = \frac{2.1}{2.8} = 0.75$		Instrumental methods provide fast, sensitive and accurate analysis		

Cracking: Splitting up a long hydrocarbon to make small hydrocarbons for fuel and alkenes to make plastics Catalytic cracking – pass over a hot catalyst, steam cracking – mix with steam and heat $C_n H_{2n}$

Alkenes have C=C double bond. They are more reactive and flammable than alkanes Bromine water will turn colourless with an alkene Alkenes can make **polymers e.g.** Many Ethene make poly(ethene)

Atmosphere changes

For the last 200 million years: 78% N, 21% O₂, 1% other: water vapour, noble gases and CO₂

4.6 Billion years ago:

- 1. Volcanoes gave out methane, nitrogen, ammonia, CO, and steam for 1 billion years
- 2. Water condensed to form oceans
- 3. Carbon dioxide dissolved in the oceans
- 4. Sedimentary rocks of carbonate (limestone) and fossil fuels produced CO₂ in atmosphere went down

2.7 Billion years ago:

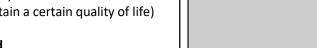
5. Plants grew and photosynthesised- CO₂ went down and O₂ went up 6. Animals could now evolve

Now CO₂ is increasing again – Global warming, oceans becoming acidic

Greenhouse Effect Greenhouse effect Greenhouse gases include water vapour, carbon dioxide and methane – keep 1. Solar temperature warm enough on Earth for life GREENHOUSE energy GASES Earth absorbs electromagnetic radiation with short wavelength Some heat Heat is radiated with a longer wavelength and escapes to space so can not escape 2. Infrared heat 3. Most heat is contained in the

atmosphere

Global Warming


Cause: Human activities increase carbon dioxide levels – deforestation, burning or fossil fuels


Consequence: Polar ice caps melt, sea level rises, flood, droughts. Changing habitats can lead to changing migration patterns and famine

Solution: reduce our carbon footprint (total amount of carbon dioxide emitted over the full life cycle of a product, service or event)

Use renewable energy, walk rather than drive, insulate homes (difficult to convince public to do this due to cost or desire to maintain a certain quality of life)

Evidence has been peer reviewed – however difficult to model complex systems. Speculation and opinion in media can be biased

Repeat, remove anomalies, calculate mean. Compare to others to prove if they are **reproducible** Problems: Gas could escape and not be measured. Syringe would have a higher resolution than Measuring cylinder

Dilute acid plus _____

water vapour

3. Collect the distilled water