

Upwards projected object : kinetic store \rightarrow G.P.E store Object hitting obstacle: kinetic store \rightarrow thermal and sound store Boiling kettle: electric energy store \rightarrow thermal energy store

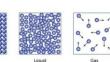
kinetic energy = 0.5 × mass × speed² elastic potential energy = 0.5 × spring constant × extension² g.p.e. = mass × gravitational field strength × height

Energy in (J) = Energy out (J) Efficiency = <u>useful energy or power out</u> Total energy or power in

Waste energy is usually heat dissipated to the surroundings. Lubrication and thermal insulation can reduce unwanted transfers

power = energy transferred or work done, Power = energy transfer of 1 Joule per second

Conduction – only in solids

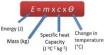

Heat the particles \rightarrow More vibrations

 \rightarrow vibrations passed on to neighbouring particles

Higher **Thermal conductivity** of a material means higher rate of energy transfer by conduction e.g. buildings cool quickly if walls are thin with and high thermal conductivity

Density = mass/volume

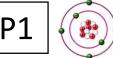
When substances change state Mass does not change.



Melt (solid \rightarrow liquid), freeze (liquid \rightarrow solid), boil and evaporate (liquid \rightarrow gas) condense (gas \rightarrow liquid), sublimate (solid \rightarrow gas)

Internal energy is the total kinetic energy and potential energy in all atoms within an object or collection of objects (system)

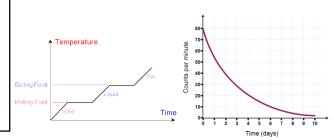
Specific Heat Capacity - How much energy is needed to raise 1Kg by 1°C


How much energy is needed to heat 2Kg of water (4200J/Kg°C) from 10°C to 100°C? 2 x 4200 x 90 = 756000J

As you heat a substance the temperature increase depends on the amount of energy input, mass and type of material

Latent heat: energy needed to change state Specific latent heat of fusion – energy needed for solid \rightarrow liquid Specific latent heat of vaporisation – energy needed for liquid \rightarrow gas

There is no temperature change while a change of state is happening as energy is being used to break intermolecular bonds


Atom Radius = 0.1nm or 1 x 10^{-10m} Nucleus Radius =1/10,000 or an atom radius or 1 x 10^{-14m}

Disadvantages Non- renewable Release CO2 (Global warming) and SO2 (Acid rain) - Carbon capture can be used
Release CO_2 (Global warming) and SO_2 (Acid rain)
to reduce amount of CO ₂ released
Non- renewable Nuclear waste dangers High set up costs Difficult to decommission
Damage to habitats Time and space needed to grow plants
Unreliable, Visual and Noise pollution, High set up costs Low amounts of energy
e, Visual and Noise pollution High set up costs Low amounts of energy Damage to habitats n
e, Only possible in volcanic areas High set up costs
6

Pressure

If a gas is kept at a **constant volume** but the **temperature increases**, the pressure will increase due to the increase in Kinetic energy and more **frequent collisions**

Temperature increase is **directly proportional** to pressure increase if volume kept the same

Sub- atomic particle	Charge	Mass
Proton	+1	1
Electron	-1	0
Neutron	0	1

Absorb EM radiation = electrons move to a higher shell Emit EM radiation = electrons move to a lower shell

Mass number = protons + neutrons Atomic number = protons (same as electrons) Isotopes = different versions of an element with the same protons but different neutrons Positive ions lose electrons, negative ions gain electrons

Atom theory

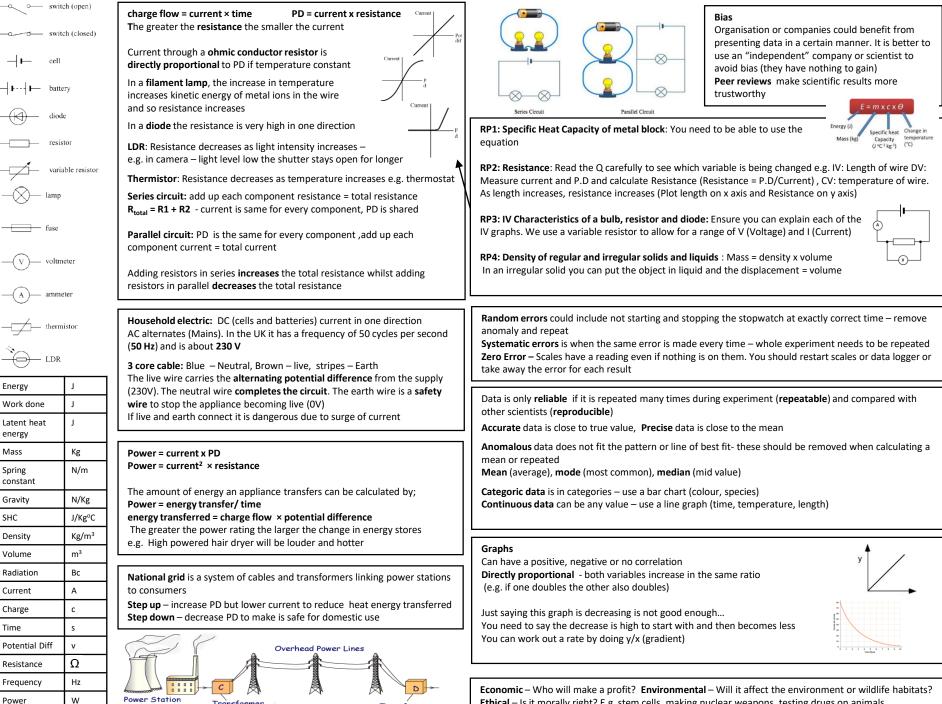
"tiny spheres" \rightarrow electrons discovered \rightarrow plum pudding model \rightarrow alpha particle scattering experiments \rightarrow nuclear model (Bohr) \rightarrow proton discovered \rightarrow Neutron discovered (Chadwick)

Alpha Scattering experiments

Positive particles shot through gold atoms. Most of the particles went straight through so atom not solid and mostly empty space (plum pudding wrong). Some positive particles deflected by the small positive nuclei in the centre (nuclear model correct)

Туре	Structure	lonising	Range in air	Stopped by
Alpha	2p,2n	High	5cm	paper
Beta	e-	Mid	1m	Thin Al
gamma	EM radiation	Low	1km	Lead

Radiation activity is measured in **becquerels** and detected by Geiger-Muller tube


Half life – average time it takes for number of radioactive nuclei in a sample to halve

Contamination is unwanted presence of radioactive atoms. Suitable precautions include tongs, lead shields and limited exposure

Irradiation is exposing an object to nuclear radiation but it does not become radioactive -e.g. to sterilise fruit

Alpha decay - mass number -4, atomic number -2 (more -ve) Beta decay - atomic number +1 (more positive)

 $_{ac}^{219}$ radon \longrightarrow $_{ac}^{215}$ polonium + $_{2}^{4}$ He $_{6}^{14}$ carbon \longrightarrow $_{7}^{14}$ nitrogen + $_{-1}^{0}$ e

Transformer

Transformer

Ethical – Is it morally right? E.g. stem cells, making nuclear weapons, testing drugs on animals